where
is a Bernoulli number and is the totient function.
Every counterexample to Giuga's conjecture is a contradiction to Agoh's
conjecture and vice versa. The smallest known Giuga numbers are 30 (3 factors),
858, 1722 (4 factors), 66198 (5 factors), 2214408306, 24423128562 (6 factors), 432749205173838,
14737133470010574, 550843391309130318 (7 factors),
It is not known if there are an infinite number of Giuga numbers. All the above numbers have sum minus product equal to 1, and any Giuga number of higher order must have
at least 59 factors. The smallest odd Giuga number
must have at least nine prime factors.
Borwein, D.; Borwein, J. M.; Borwein, P. B.; and Girgensohn, R. "Giuga's Conjecture on Primality." Amer. Math. Monthly103,
40-50, 1996.Butske, W.; Jaje, L. M.; and Mayernik, D. R. "The
Equation ,
Pseudoperfect Numbers, and Partially Weighted Graphs." Math. Comput.69,
407-420, 1999.Kellner, B. C. Über irreguläre Paare
höherer Ordnungen. Diplomarbeit. Göttingen, Germany: Mathematischen
Institut der Georg August Universität zu Göttingen, 2002. http://www.bernoulli.org/~bk/irrpairord.pdf.Kellner,
B. C. "The Equivalence of Giuga's and Agoh's Conjectures." Preprint.
10 July 2003. http://www.bernoulli.org/~bk/equivalence.pdf.Sloane,
N. J. A. Sequence A007850 in "The
On-Line Encyclopedia of Integer Sequences."