TOPICS
Search

Giuga Number


Any composite number n with p|(n/p-1) for all prime divisors p of n. n is a Giuga number iff

 sum_(k=1)^(n-1)k^(phi(n))=-1 (mod n)
(1)

where phi is the totient function and iff

 sum_(p|n)1/p-product_(p|n)1/p in N.
(2)

n is a Giuga number iff

 nB_(phi(n))=-1 (mod n),
(3)

where B_k is a Bernoulli number and phi is the totient function. Every counterexample to Giuga's conjecture is a contradiction to Agoh's conjecture and vice versa. The smallest known Giuga numbers are 30 (3 factors), 858, 1722 (4 factors), 66198 (5 factors), 2214408306, 24423128562 (6 factors), 432749205173838, 14737133470010574, 550843391309130318 (7 factors),

244197000982499715087866346, 554079914617070801288578559178

(8 factors), ... (OEIS A007850).

It is not known if there are an infinite number of Giuga numbers. All the above numbers have sum minus product equal to 1, and any Giuga number of higher order must have at least 59 factors. The smallest odd Giuga number must have at least nine prime factors.


See also

Agoh's Conjecture, Bernoulli Number, Primary Pseudoperfect Number, Totient Function

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Borwein, D.; Borwein, J. M.; Borwein, P. B.; and Girgensohn, R. "Giuga's Conjecture on Primality." Amer. Math. Monthly 103, 40-50, 1996.Butske, W.; Jaje, L. M.; and Mayernik, D. R. "The Equation sum_(p|N)1/p+1/N=1, Pseudoperfect Numbers, and Partially Weighted Graphs." Math. Comput. 69, 407-420, 1999.Kellner, B. C. Über irreguläre Paare höherer Ordnungen. Diplomarbeit. Göttingen, Germany: Mathematischen Institut der Georg August Universität zu Göttingen, 2002. http://www.bernoulli.org/~bk/irrpairord.pdf.Kellner, B. C. "The Equivalence of Giuga's and Agoh's Conjectures." Preprint. 10 July 2003. http://www.bernoulli.org/~bk/equivalence.pdf.Sloane, N. J. A. Sequence A007850 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Giuga Number

Cite this as:

Weisstein, Eric W. "Giuga Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GiugaNumber.html

Subject classifications