The first few Genocchi numbers for , 4, ... are , 1, , 17, , 2073, ... (OEIS A001469).
The first few prime Genocchi numbers are and 17, which occur for and 8. There are no others with (Weisstein, Mar. 6, 2004). D. Terr (pers.
comm., Jun. 8, 2004) proved that these are in fact, the only prime Genocchi
numbers.
Catalan, E. "Sur le calcul des Nombres de Bernoulli." C. R. Acad. Sci. Paris58, 1105-1108, 1864.Comtet, L.
Advanced
Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht,
Netherlands: Reidel, p. 49, 1974.Kreweras, G. "An Additive
Generation for the Genocchi Numbers and Two of its Enumerative Meanings." Bull.
Inst. Combin. Appl.20, 99-103, 1997.Kreweras, G. "Sur
les permutations comptées par les nombres de Genocchi de 1-ière et
2-ième espèce." Europ. J. Comb.18, 49-58, 1997.Rota,
G.-C.; Kahaner, D.; Odlyzko, A. "On the Foundations of Combinatorial Theory.
VIII: Finite Operator Calculus." J. Math. Anal. Appl.42, 684-760,
1973.Sloane, N. J. A. Sequence A001469/M3041
in "The On-Line Encyclopedia of Integer Sequences."