TOPICS
Search

Gauss's Hypergeometric Theorem


 _2F_1(a,b;c;1)=((c-b)_(-a))/((c)_(-a))=(Gamma(c)Gamma(c-a-b))/(Gamma(c-a)Gamma(c-b))

for R[c-a-b]>0, where _2F_1(a,b;c;x) is a (Gauss) hypergeometric function. If a is a negative integer -n, this becomes

 _2F_1(-n,b;c;1)=((c-b)_n)/((c)_n),

which is known as the Chu-Vandermonde identity.


See also

Chu-Vandermonde Identity, Dougall's Formula, Generalized Hypergeometric Function, Hypergeometric Function, Thomae's Theorem

Explore with Wolfram|Alpha

References

Bailey, W. N. "Gauss's Theorem." §1.3 in Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, pp. 2-3, 1935.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 104, 1999.Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 31, 1998.Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, pp. 42 and 126, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.

Referenced on Wolfram|Alpha

Gauss's Hypergeometric Theorem

Cite this as:

Weisstein, Eric W. "Gauss's Hypergeometric Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GausssHypergeometricTheorem.html

Subject classifications