TOPICS
Search

Gauss-Jordan Elimination


A method for finding a matrix inverse. To apply Gauss-Jordan elimination, operate on a matrix

 [A I]=[a_(11) ... a_(1n) 1 0 ... 0; a_(21) ... a_(2n) 0 1 ... 0; | ... | | | ... |; a_(n1) ... a_(nn) 0 0 ... 1],
(1)

where I is the identity matrix, and use Gaussian elimination to obtain a matrix of the form

 [1 0 ... 0 b_(11) ... b_(1n); 0 1 ... 0 b_(21) ... b_(2n); | | ... | | ... |; 0 0 ... 1 b_(n1) ... b_(nn)].
(2)

The matrix

 B=[b_(11) ... b_(1n); b_(21) ... b_(2n); | ... |; b_(n1) ... b_(nn)]
(3)

is then the matrix inverse of A. The procedure is numerically unstable unless pivoting (exchanging rows and columns as appropriate) is used. Picking the largest available element as the pivot is usually a good choice.


See also

Condensation, Gaussian Elimination, LU Decomposition, Matrix Equation

Explore with Wolfram|Alpha

References

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Gauss-Jordan Elimination" and "Gaussian Elimination with Backsubstitution." §2.1 and 2.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 27-32 and 33-34, 1992.

Referenced on Wolfram|Alpha

Gauss-Jordan Elimination

Cite this as:

Weisstein, Eric W. "Gauss-Jordan Elimination." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Gauss-JordanElimination.html

Subject classifications