TOPICS
Search

Galois Theory


If there exists a one-to-one correspondence between two subgroups and subfields such that

G(E(G^'))=G^'
(1)
E(G(E^'))=E^',
(2)

then E is said to have a Galois theory.

A Galois correspondence can also be defined for more general categories.


See also

Abel's Impossibility Theorem, Subfield

Explore with Wolfram|Alpha

References

Artin, E. Galois Theory, 2nd ed. Notre Dame, IN: Edwards Brothers, 1944.Birkhoff, G. and Mac Lane, S. "Galois Theory." Ch. 15 in A Survey of Modern Algebra, 5th ed. New York: Macmillan, pp. 395-421, 1996.Dummit, D. S. and Foote, R. M. "Galois Theory." Ch. 14 in Abstract Algebra, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 471-570, 1998.Stewart, I. Galois Theory. London: Chapman and Hall, London, 1972.

Referenced on Wolfram|Alpha

Galois Theory

Cite this as:

Weisstein, Eric W. "Galois Theory." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GaloisTheory.html

Subject classifications