If is continuous and the integral converges,
Frullani's Integral
Explore with Wolfram|Alpha
References
Jeffreys, H. and Jeffreys, B. S. "Frullani's Integrals." §12.16 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 406-407, 1988.Spiegel, M. R. Mathematical Handbook of Formulas and Tables. New York: McGraw-Hill, 1968.Referenced on Wolfram|Alpha
Frullani's IntegralCite this as:
Weisstein, Eric W. "Frullani's Integral." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FrullanisIntegral.html