TOPICS
Search

Frullani's Integral


If f^'(x) is continuous and the integral converges,

 int_0^infty(f(ax)-f(bx))/xdx=[f(0)-f(infty)]ln(b/a).

Explore with Wolfram|Alpha

References

Jeffreys, H. and Jeffreys, B. S. "Frullani's Integrals." §12.16 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 406-407, 1988.Spiegel, M. R. Mathematical Handbook of Formulas and Tables. New York: McGraw-Hill, 1968.

Referenced on Wolfram|Alpha

Frullani's Integral

Cite this as:

Weisstein, Eric W. "Frullani's Integral." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FrullanisIntegral.html

Subject classifications