TOPICS
Search

Framework


Consider a finite collection of points p=(p_1,...,p_n), p_i in R^d Euclidean space (known as a configuration) and a graph G whose graph vertices correspond to pairs of points that are constrained to stay the same distance apart. Then the graph G together with the configuration p, denoted G(p), is called a framework.


See also

Configuration, Graph Bar, Rigid Graph, Tensegrity

Explore with Wolfram|Alpha

References

Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., p. 56, 1967.

Referenced on Wolfram|Alpha

Framework

Cite this as:

Weisstein, Eric W. "Framework." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Framework.html

Subject classifications