The study of an extension of derivatives and integrals to noninteger orders. Fractional calculus is based on the definition of the fractional
integral as
where
is the gamma function . From this equation, fractional
derivatives can also be defined.
See also Derivative ,
Fractional Derivative ,
Fractional Differential
Equation ,
Fractional Integral ,
Fractional
Integral Equation ,
Integral ,
Multiple
Integral ,
Riemann-Liouville Operator
Explore with Wolfram|Alpha
References Butzer, P. L. and Westphal, U. "An Introduction to Fractional Calculus." Ch. 1 in Applications
of Fractional Calculus in Physics (Ed. R. Hilfer). Singapore: World
Scientific, pp. 1-85, 2000. Kilbas, A. A.; Srivastava, H. M.;
and Trujiilo, J. J. Theory
and Applications of Fractional Differential Equations. Amsterdam, Netherlands:
Elsevier, 2006. McBride, A. C. Fractional
Calculus. New York: Halsted Press, 1986. Nishimoto, K. Fractional
Calculus. New Haven, CT: University of New Haven Press, 1989. Samko,
S. G.; Kilbas, A. A.; and Marichev, O. I. Fractional
Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach, 1993. Oldham,
K. B. and Spanier, J. The
Fractional Calculus: Integrations and Differentiations of Arbitrary Order.
New York: Academic Press, 1974. Referenced on Wolfram|Alpha Fractional Calculus
Cite this as:
Weisstein, Eric W. "Fractional Calculus."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/FractionalCalculus.html
Subject classifications