TOPICS
Search

Fractional Calculus


The study of an extension of derivatives and integrals to noninteger orders. Fractional calculus is based on the definition of the fractional integral as

 D^(-nu)f(t)=1/(Gamma(nu))int_0^t(t-xi)^(nu-1)f(xi)dxi,

where Gamma(nu) is the gamma function. From this equation, fractional derivatives can also be defined.


See also

Derivative, Fractional Derivative, Fractional Differential Equation, Fractional Integral, Integral, Multiple Integral, Riemann-Liouville Operator

Explore with Wolfram|Alpha

References

Butzer, P. L. and Westphal, U. "An Introduction to Fractional Calculus." Ch. 1 in Applications of Fractional Calculus in Physics (Ed. R. Hilfer). Singapore: World Scientific, pp. 1-85, 2000.Kilbas, A. A.; Srivastava, H. M.; and Trujiilo, J. J. Theory and Applications of Fractional Differential Equations. Amsterdam, Netherlands: Elsevier, 2006.McBride, A. C. Fractional Calculus. New York: Halsted Press, 1986.Nishimoto, K. Fractional Calculus. New Haven, CT: University of New Haven Press, 1989.Samko, S. G.; Kilbas, A. A.; and Marichev, O. I. Fractional Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach, 1993.Oldham, K. B. and Spanier, J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York: Academic Press, 1974.

Referenced on Wolfram|Alpha

Fractional Calculus

Cite this as:

Weisstein, Eric W. "Fractional Calculus." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FractionalCalculus.html

Subject classifications