The Fourier transform of a Gaussian function
is given by
The second integrand is odd , so integration over a symmetrical range gives 0. The value of the first integral is given by Abramowitz
and Stegun (1972, p. 302, equation 7.4.6), so
(4)
so a Gaussian transforms to another Gaussian .
See also Gaussian Function ,
Fourier
Transform
Explore with Wolfram|Alpha
References Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, p. 302, 1972. Bracewell, R. The
Fourier Transform and Its Applications, 3rd ed. New York: McGraw-Hill, pp. 98-101,
1999.
Cite this as:
Weisstein, Eric W. "Fourier Transform--Gaussian."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/FourierTransformGaussian.html
Subject classifications