TOPICS
Search

First Fermat Point


OuterNapoleonsTheorem

The first Fermat point X (or F_1) (sometimes simply called "the Fermat point," Torricelli point, or first isogonic center) is the point X which minimizes the sum of distances from A, B, and C in an acute triangle,

 |AX|+|BX|+|CX|.
(1)

It has equivalent triangle center functions

alpha_(13)=csc(A+1/3pi)
(2)
alpha_(13)=bc[c^2a^2+(c^2+a^2-b^2)^2][a^2b^2-(a^2+b^2-c^2)^2][4Delta-sqrt(3)(b^2+c^2-a^2)]
(3)

and is Kimberling center X_(13) (Kimberling 1998, p. 67).

It also arises in Napoleon's theorem.

The antipedal triangle of the first Fermat point is an equilateral triangle (Shenghui Yang, pers. comm. to E. Pegg, Jr., Jan. 3, 2025).


See also

Fermat Axis, Fermat Points, Napoleon's Theorem, Second Fermat Point

Explore with Wolfram|Alpha

References

Kazarinoff, N. D. Geometric Inequalities. New York: Random House, pp. 117-118, 1961.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.Kimberling, C. "Fermat Point." http://faculty.evansville.edu/ck6/tcenters/class/fermat.html.Kimberling, C. "Encyclopedia of Triangle Centers: X(13)=1st Isogonic Center." http://faculty.evansville.edu/ck6/encyclopedia/ETC.html#X13.

Referenced on Wolfram|Alpha

First Fermat Point

Cite this as:

Weisstein, Eric W. "First Fermat Point." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FirstFermatPoint.html

Subject classifications