TOPICS
Search

Finsler Module


Let A be a C^*-algebra and A_+ be its positive part. Suppose that E is a complex linear space which is a left A-module and lambda(ax)=(lambdaa)x=a(lambdax), where lambda in C, a in A, and x in E equipped with a map rho:E->A_+ such that

1. The map ||·||:x|->||rho(x)||^(1/2) is a norm on E, and

2. rho(ax)=arho(x)a^* for each a in A and x in E.

Then E is called a pre-Finsler A-module. If (E,||·||) is complete then E is called a Finsler module over the C^*-algebra A. This definition is a modification of one introduced by Phillips and Weaver (1998; Moslehian 2001).

For example, if E is a Hilbert C^*-module over A, then E together with rho(x)=<x,x> is a Finsler module because rho(ax)=<ax,ax>=a<x,x>a^*=arho(x)a^*. There are Finsler A-modules can not be regarded as Hilbert A-modules (Phillips and Weaver 1998).


This entry contributed by Mohammad Sal Moslehian

Explore with Wolfram|Alpha

References

Moslehian, M. S. "On Full Hilbert C^*-Modules." Bull. Malay. Math. Soc. 23, 45-47, 2001.Phillips, N. C. and Weaver, N. "Modules with Norms Which Take Values in a C^*-Algebra." Pacific J. Math. 185, 163-181, 1998.

Referenced on Wolfram|Alpha

Finsler Module

Cite this as:

Moslehian, Mohammad Sal. "Finsler Module." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/FinslerModule.html

Subject classifications