According to Hardy and Wright (1979), the 44-digit Ferrier's prime
determined to be prime using only a mechanical calculator, is the largest prime found before the days of electronic computers. The Wolfram Language can verify primality of this number in a (small) fraction of a second, showing how far the art of numerical computation has advanced in the intervening years. It can be shown to be a probable prime almost instantaneously
In[1]:= FerrierPrime = (2^148 + 1)/17; In[2]:= PrimeQ[FerrierPrime] // Timing Out[2]= {0.01 Second, True}
and verified to be an actual prime complete with primality certificate almost as quickly
In[3]:= <<PrimalityProving` In[4]:= ProvablePrimeQ[FerrierPrime, "Certificate" -> True] // Timing Out[4]= {0.04 Second,{True, {20988936657440586486151264256610222593863921,17, {2,{3,2,{2}},{5,2,{2}},{7,3,{2,{3,2,{2}}}}, {13,2,{2,{3,2,{2}}}},{19, 2,{2,{3,2,{2}}}},{37,2,{2,{3,2,{2}}}},{73,5,{ 2,{3,2,{2}}}},{97,5,{2,{3,2,{2}}}},{109, 6,{2,{3,2,{2}}}},{241,7,{2,{3,2,{2}},{5,2,{ 2}}}},{257,3,{2}},{433,5,{2,{3,2,{2}}}},{ 577,5,{2,{3,2,{2}}}},{673,5,{2,{3,2,{2}},{ 7,3,{2,{3,2,{2}}}}}},{38737,5,{2,{3,2,{2}}, {269,2,{2,{67,2,{2,{3,2,{2}},{11,2,{2,{5, 2,{2}}}}}}}}}},{487824887233,5,{2,{3,2,{2}},{ 1091,2,{2,{5,2,{2}},{109,6,{2,{3,2,{2}}}}}}, {28751,14,{2,{5,2,{2}},{23,5, {2,{11,2,{2,{5,2,{2}}}}}}}}}}}}}}