TOPICS
Search

Ferrers Graph Polygon


FerrersGraphPolygon

A self-avoiding polygon containing three corners of its minimal bounding rectangle. The anisotropic area and perimeter generating function G(x,y) and partial generating functions H_m(y), connected by

 G(x,y,q)=sum_(m>=1)H_m(y,q)x^m,
(1)

satisfy the self-reciprocity and inversion relations

 H_m(1/y,1/q)=(-1)^my^(m-2)q^((m^3-3m)/2)H_m(y,q)
(2)

and

 G(x,y)-y^2G(-x/y,1/y)=0
(3)

(Bousquet-Mélou et al. 1999).


See also

Lattice Polygon, Self-Avoiding Polygon

Explore with Wolfram|Alpha

References

Bousquet-Mélou, M.; Guttmann, A. J.; Orrick, W. P.; and Rechnitzer, A. "Inversion Relations, Reciprocity and Polyominoes." 23 Aug 1999. http://arxiv.org/abs/math.CO/9908123.

Referenced on Wolfram|Alpha

Ferrers Graph Polygon

Cite this as:

Weisstein, Eric W. "Ferrers Graph Polygon." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FerrersGraphPolygon.html

Subject classifications