TOPICS
Search

Euler-Lucas Pseudoprime


Let U(P,Q) and V(P,Q) be Lucas sequences generated by P and Q, and define

 D=P^2-4Q.
(1)

Then

 {U_((n-(D/n))/2)=0 (mod n)   when (Q/n)=1; V_((n-(D/n))/2)=D (mod n)   when (Q/n)=-1,
(2)

where (Q/n) is the Legendre symbol. An odd composite number n such that (n,QD)=1 (i.e., n and QD are relatively prime) is called an Euler-Lucas pseudoprime with parameters (P,Q).


See also

Pseudoprime, Strong Lucas Pseudoprime

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Ribenboim, P. "Euler-Lucas Pseudoprimes (elpsp(P,Q)) and Strong Lucas Pseudoprimes (slpsp(P,Q))." §2.X.C in The New Book of Prime Number Records. New York: Springer-Verlag, pp. 130-131, 1996.

Referenced on Wolfram|Alpha

Euler-Lucas Pseudoprime

Cite this as:

Weisstein, Eric W. "Euler-Lucas Pseudoprime." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Euler-LucasPseudoprime.html

Subject classifications