TOPICS
Search

Euclid-Mullin Sequence


The sequence of numbers obtained by letting a_1=2, and defining

 a_n=lpf(1+product_(k=1)^(n-1)a_k)

where lpf(n) is the least prime factor. The first few terms are 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, ... (OEIS A000945). Only 43 terms of the sequence are known; the 44th requires factoring a composite 180-digit number.


See also

Euclid Number, Least Prime Factor

Explore with Wolfram|Alpha

References

Guy, R. K. and Nowakowski, R. "Discovering Primes with Euclid." Delta (Waukesha) 5, 49-63, 1975.Mullin, A. A. "Recursive Function Theory." Bull. Amer. Math. Soc. 69, 737, 1963.Naur, T. "Mullin's Sequence of Primes Is Not Monotonic." Proc. Amer. Math. Soc. 90, 43-44, 1984.Sloane, N. J. A. Sequence A000945/M0863 in "The On-Line Encyclopedia of Integer Sequences."Wagstaff, S. S. "Computing Euclid's Primes." Bull. Institute Combin. Applications 8, 23-32, 1993.

Referenced on Wolfram|Alpha

Euclid-Mullin Sequence

Cite this as:

Weisstein, Eric W. "Euclid-Mullin Sequence." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Euclid-MullinSequence.html

Subject classifications