TOPICS
Search

Escher's Solid


EschersSolid

"Escher's solid" is the solid illustrated on the right pedestal in M. C. Escher's Waterfall woodcut (Bool et al. 1982, p. 323). It is obtained by augmenting a rhombic dodecahedron until incident edges become parallel, corresponding to augmentation height of sqrt(2/3) for a rhombic dodecahedron with unit edge lengths.

It is the hull of the first rhombic dodecahedron stellation and is a space-filling polyhedron. Its convex hull is a cuboctahedron.

It is implemented in the Wolfram Language as PolyhedronData["EscherSolid"].

It has edge lengths

s_1=1
(1)
s_2=2/3sqrt(3),
(2)

surface area and volume

S=16sqrt(2)
(3)
V=(32)/9sqrt(3),
(4)

and moment of inertia tensor

 I=[5/9 0 0; 0 5/9 0; 0 0 5/9]Ma^2.
(5)
EschersSolidSkeleton

The skeleton of Escher's solid is the graph of the disdyakis dodecahedron.

Escher's solid also corresponds to the hull of a polyhedron compound of three square dipyramids (nonregular octahedra) with edges of length 2 and 4/sqrt(3).


See also

Augmentation, Dipyramid, Rhombic Dodecahedron, Rhombic Dodecahedron Stellations, Space-Filling Polyhedron

Explore with Wolfram|Alpha

References

Bool, F. H.; Kist, J. R.; Locher, J. L.; and Wierda, F. M. C. Escher: His Life and Complete Graphic Work. New York: Abrams, 1982.Brill, D. "Double Star Flexicube." Brilliant Origami: A Collection of Original Designs. Tokyo: Japan Pub., pp. 98-103, 996.Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, pp. 25 and 103, 1973.Escher, M. C. "Waterfall." Lithograph. 1961. http://www.mcescher.com/Gallery/recogn-bmp/LW439.jpg.Grünbaum, B. "Parallelogram-Faced Isohedra with Edges in Mirror-Planes." Disc. Math. 221, 93-100, 2000.

Cite this as:

Weisstein, Eric W. "Escher's Solid." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EschersSolid.html

Subject classifications