TOPICS
Search

Equireciprocal Point


p is an equireciprocal point if, for every chord [x,y] of a curve C, p satisfies

 |x-p|^(-1)+|y-p|^(-1)=c

for some constant c. The foci of an ellipse are equichordal points.


See also

Equichordal Point, Equiproduct Point

Explore with Wolfram|Alpha

References

Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved Problems in Geometry. New York: Springer-Verlag, p. 10, 1991.Falconer, K. J. "On the Equireciprocal Point Problem." Geom. Dedicata 14, 113-126, 1983.Hallstrom, A. P. "Equichordal and Equireciprocal Points." Bogasici Univ. J. Sci. 2, 83-88, 1974.Klee, V. "Can a Plane Convex Body have Two Equireciprocal Points?" Amer. Math. Monthly 76, 54-55, 1969.Klee, V. "Correction to 'Can a Plane Convex Body have Two Equireciprocal Points?' " Amer. Math. Monthly 78, 114, 1971.

Referenced on Wolfram|Alpha

Equireciprocal Point

Cite this as:

Weisstein, Eric W. "Equireciprocal Point." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EquireciprocalPoint.html

Subject classifications