TOPICS
Search

Enneper-Weierstrass Parameterization


A parameterization of a minimal surface in terms of two functions f(z) and g(z) as

 [x(r,phi); y(r,phi); z(r,phi)]=Rint[f(1-g^2); if(1+g^2); 2fg]dz,

where z=re^(iphi) and R[z] is the real part of z. Examples are given in the following table.


See also

Bour's Minimal Surface, Enneper's Minimal Surface, Henneberg's Minimal Surface, Minimal Surface, Scherk's Minimal Surfaces, Trinoid

Explore with Wolfram|Alpha

References

Dickson, S. "Minimal Surfaces." Mathematica J. 1, 38-40, 1990.do Carmo, M. P. Mathematical Models from the Collections of Universities and Museums (Ed. G. Fischer). Braunschweig, Germany: Vieweg, p. 41, 1986.Gray, A. "Minimal Surfaces via the Weierstrass Representation." Ch. 32 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 735-760, 1997.Weierstrass, K. "Über die Flächen deren mittlere Krümmung überall gleich null ist." Monatsber. Berliner Akad., 612-625, 1866. Wolfram Research, Inc. "Weierstrass Surfaces." http://library.wolfram.com/infocenter/Demos/133/.

Referenced on Wolfram|Alpha

Enneper-Weierstrass Parameterization

Cite this as:

Weisstein, Eric W. "Enneper-Weierstrass Parameterization." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Enneper-WeierstrassParameterization.html

Subject classifications