Let be a superstructure
monomorphism, with
and for . Then is an enlargement of provided that for each set in ,
there is a hyperfinite set that contains all the standard entities of .
It is the case that
is an enlargement of
if and only if every concurrent binary relation satisfies the following: There is an element of the range of such that for every in the domain of , the pair is in the relation .
Gehrke, M.; Kaiser, K.; and Insall, M. "Some Nonstandard Methods Applied to Distributive Lattices." Zeitschrifte für Mathematische
Logik und Grundlagen der Mathematik36, 123-131, 1990.Gonshor,
H. "Enlargements Contain Various Kinds of Completions". In Proc. 1972
Victoria Symposium on Nonstandard Analysis. New York: Springer-Verlag, pp. 60-70,
1974.Gonshor, H. "Enlargements of Boolean Algebras and Stone Spaces".
Fund. Math.100, 35-59, 1978.Hurd, A. E. and Loeb,
P. A. An
Introduction to Nonstandard Real Analysis. Orlando, FL: Academic Press, 1985.Insall,
M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods."
J. Austral. Math. Soc.53, 266-280, 1992.Insall, M. "Geometric
Conditions for Local Finiteness of a Lattice of Convex Sets." Math. Moravica1,
35-40, 1997.Insall, M. "Nonstandard Methods and Finiteness Conditions
in Algebra." Zeitschr. f. Math., Logik, und Grundlagen d. Math.37,
525-532, 1991.Luxemburg, W. A. J. Applications
of Model Theory to Algebra, Analysis, and Probability. New York: Holt, Rinehart,
and Winston, 1969.Robinson, A. Nonstandard Analysis. Amsterdam,
Netherlands: North-Holland, 1966.Robinson, A. "Germs." In
Applications of Model Theory to Algebra, Analysis and Probability (International
Sympos., Pasadena, Calif., 1967).Schmid, J. "Completing Boolean
Algebras by Nonstandard Methods." Zeitschr. für Math. Logik u. Grundlagen
der Mathematik20, 47-48, 1974.Schmid, J. "Nonstandard
Constructions for Join-Extensions of Lattices." Houston J. Math.3,
423-439, 1977.