Now setting
gives the identity (Dobiński 1877; Rota 1964; Berge 1971, p. 44; Comtet
1974, p. 211; Roman 1984, p. 66; Lupas 1988; Wilf 1994, p. 106; Chen
and Yeh 1994; Pitman 1997).
Dobinski also published a curious infinite product
sometimes also known as Dobiński's formula.
Berge, C. Principles of Combinatorics. New York: Academic Press, 1971.Blasiak, P.;
Penson, K. A.; and Solomon, A. I. "Dobiński-Type Relations and
the Log-Normal Distribution." J. Phys. A: Math. Gen.36, L273-278,
2003.Chen, B. and Yeh, Y.-N. "Some Explanations of Dobinski's Formula."
Studies Appl. Math.92, 191-199, 1994.Comtet, L. Advanced
Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht,
Netherlands: Reidel, 1974.Dobiński, G. "Summierung der Reihe
für , 2, 3, 4, 5, ...." Grunert Archiv (Arch. Math. Phys.)61,
333-336, 1877.Foata, D. La
série génératrice exponentielle dans les problèmes d'énumération.
Montréal, Canada: Presses de l'Université de Montréal, 1974.Lupas,
A. "Dobiński-Type Formula for Binomial Polynomials." Stud. Univ.
Babes-Bolyai Math.33, 30-44, 1988.Penson, K. A.; Blasiak,
P.; Duchamp, G.; Horzela, A.; and Solomon, A. I. "Hierarchical Dobiński-Type
Relations via Substitution and the Moment Problem." 26 Dec 2003. http://www.arxiv.org/abs/quant-ph/0312202/.Pitman,
J. "Some Probabilistic Aspects of Set Partitions." Amer. Math. Monthly104,
201-209, 1997.Roman, S. The
Umbral Calculus. New York: Academic Press, p. 66, 1984.Rota,
G.-C. "The Number of Partitions of a Set." Amer. Math. Monthly71,
498-504, 1964.Wilf, H. Generatingfunctionology,
2nd ed. New York: Academic Press, 1994.