TOPICS
Search

Devil's Curve


DevilsCurve

The devil's curve was studied by G. Cramer in 1750 and Lacroix in 1810 (MacTutor Archive). It appeared in Nouvelles Annales in 1858. The Cartesian equation is

 y^4-a^2y^2=x^4-b^2x^2,
(1)

equivalent to

 y^2(y^2-a^2)=x^2(x^2-b^2),
(2)

the polar equation is

 r^2(sin^2theta-cos^2theta)=a^2sin^2theta-b^2cos^2theta,
(3)

and the parametric equations are

x=costsqrt((a^2sin^2t-b^2cos^2t)/(sin^2t-cos^2t))
(4)
y=sintsqrt((a^2sin^2t-b^2cos^2t)/(sin^2t-cos^2t)).
(5)

The curve illustrated above corresponds to parameters a^2=1 and b^2=2.

It has a crunode at the origin.

Devil's curve animation

For a/b<1, the cental hourglass is horizontal, for a/b>1, it is vertical, and as it passes through a=b, the curve changes to a circle.

ElectricMotor

A special case of the Devil's curve is the so-called "electric motor curve":

 y^2(y^2-96)=x^2(x^2-100)
(6)

(Cundy and Rollett 1989).


See also

Barbell Graph, Butterfly Curve, Dumbbell Curve, Eight Curve, Lemniscate, Piriform Curve, Pitchfork Bifurcation, Teardrop Curve

Explore with Wolfram|Alpha

References

--. Nouvelle Annales, p. 317, 1858.Cramer, G. Introduction a l'analyse des lignes courbes algébriques. Geneva, p. 19, 1750.Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., p. 71, 1989.Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 92-93, 1997.Lacroix, S. F. Traité du calcul différentiel et intégral, Vol. 1. Paris, p. 391, 1810.Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 151-152, 1972.MacTutor History of Mathematics Archive. "Devil's Curve." http://www-groups.dcs.st-and.ac.uk/~history/Curves/Devils.html.Smith, D. E. History of Mathematics, Vol. 2: Special Topics of Elementary Mathematics. New York: Dover, p. 328, 1958.

Cite this as:

Weisstein, Eric W. "Devil's Curve." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/DevilsCurve.html

Subject classifications