TOPICS
Search

Desargues' Theorem


DesarguesTheorem

If the three straight lines joining the corresponding vertices of two triangles ABC and A^'B^'C^' all meet in a point (the perspector), then the three intersections of pairs of corresponding sides lie on a straight line (the perspectrix). Equivalently, if two triangles are perspective from a point, they are perspective from a line.

The 10 lines and 10 3-line intersections form a 10_3 configuration sometimes called Desargues' configuration.

Desargues' theorem is self-dual.


See also

Desargues' Configuration, Duality Principle, Pappus's Hexagon Theorem, Pascal Lines, Pascal's Theorem, Perspector, Perspective Triangles, Perspectrix, Self-Dual

Explore with Wolfram|Alpha

References

Coxeter, H. S. M. The Beauty of Geometry: Twelve Essays. New York: Dover, p. 244, 1999.Coxeter, H. S. M. and Greitzer, S. L. "Perspective Triangles; Desargues's Theorem." §3.6 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 70-72, 1967.Durell, C. V. Modern Geometry: The Straight Line and Circle. London: Macmillan, p. 44, 1928.Eves, H. "Desargues' Two-Triangle Theorem." §6.2.5 in A Survey of Geometry, rev. ed. Boston, MA: Allyn & Bacon, pp. 249-251, 1965.Graustein, W. C. Introduction to Higher Geometry. New York: Macmillan, pp. 23-25, 1930.Ogilvy, C. S. Excursions in Geometry. New York: Dover, pp. 89-92, 1990.Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, p. 231, 1929.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 77, 1986.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 54-55, 1991.

Referenced on Wolfram|Alpha

Desargues' Theorem

Cite this as:

Weisstein, Eric W. "Desargues' Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/DesarguesTheorem.html

Subject classifications