TOPICS
Search

Covariant Derivative


The covariant derivative of a contravariant tensor A^a (also called the "semicolon derivative" since its symbol is a semicolon) is given by

A^a_(;b)=(partialA^a)/(partialx^b)+Gamma_(bk)^aA^k
(1)
=A^a_(,b)+Gamma_(bk)^aA^k
(2)

(Weinberg 1972, p. 103), where Gamma_(ij)^k is a Christoffel symbol, Einstein summation has been used in the last term, and A_(,k)^k is a comma derivative. The notation del ·A, which is a generalization of the symbol commonly used to denote the divergence of a vector function in three dimensions, is sometimes also used.

The covariant derivative of a covariant tensor A_a is

 A_(a;b)=(partialA_a)/(partialx^b)-Gamma_(ab)^kA_k
(3)

(Weinberg 1972, p. 104).

Schmutzer (1968, p. 72) uses the older notation A^j_(∥k) or A_(j∥k).


See also

Christoffel Symbol, Comma Derivative, Covariant Tensor, Divergence, Levi-Civita Connection

Explore with Wolfram|Alpha

References

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 48-50, 1953.Schmutzer, E. Relativistische Physik (Klassische Theorie). Leipzig, Germany: Akademische Verlagsgesellschaft, 1968.Weinberg, S. "Covariant Differentiation." §4.6 in Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York: Wiley, pp. 103-106, 1972.

Referenced on Wolfram|Alpha

Covariant Derivative

Cite this as:

Weisstein, Eric W. "Covariant Derivative." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CovariantDerivative.html

Subject classifications