TOPICS
Search

Conway's Knot Notation


A concise notation based on the concept of the tangle used by Conway (1967) to enumerate prime knots up to 11 crossings.

An algebraic knot containing no negative signs in its Conway knot notation is an alternating knot.

Conway's knot notation is implemented in the Wolfram Language as KnotData[knot, "ConwayNotation"]. Rolfsen (1976) gives a table that includes Conway's knot notation for prime knots on 10 or fewer crossings, as summarized in the table below.

0_1?9_(15)232210_(16)412310_(66)31,21,2110_(116)8*2:2
3_139_(16)3,3,2+10_(17)411410_(67)22,3,2110_(117)8*2:20
4_1229_(17)2131210_(18)4112210_(68)211,3,310_(118)8*2:.2
5_159_(18)322210_(19)4111310_(69)211,21,2110_(119)8*2:.20
5_2329_(19)2311210_(20)35210_(70)22,3,2+10_(120)8*20::20
6_1429_(20)3121210_(21)341210_(71)22,21,2+10_(121)9*20
6_23129_(21)3112210_(22)331310_(72)211,3,2+10_(122)9*.20
6_321129_(22)211,3,210_(23)3311210_(73)211,21,2+10_(123)10*
7_179_(23)2212210_(24)323210_(74)3,3,21+10_(124)5,3,2-
7_2529_(24)3,21,2+10_(25)3221210_(75)21,21,21+10_(125)5,21,2-
7_3439_(25)22,21,210_(26)3211310_(76)3,3,2++10_(126)41,3,2-
7_43139_(26)31111210_(27)32111210_(77)3,21,2++10_(127)41,21,2-
7_53229_(27)21211210_(28)3131210_(78)21,21,2++10_(128)32,3,2-
7_622129_(28)21,21,2+10_(29)3122210_(79)(3,2)(3,2)10_(129)32,21,-2
7_7211129_(29).2.20.210_(30)31211210_(80)(3,2)(21,2)10_(130)311,3,2-
8_1629_(30)211,21,210_(31)3113210_(81)(21,2)(21,2)10_(131)311,21,2-
8_25129_(31)211111210_(32)31112210_(82).4.210_(132)23,3,2-
8_3449_(32).21.2010_(33)31111310_(83).31.2010_(133)23,21,2-
8_44139_(33).21.210_(34)251210_(84).22.210_(134)221,3,2-
8_53,3,29_(34)8*2010_(35)242210_(85).4.2010_(135)221,21,2-
8_63329_(35)3,3,310_(36)2411210_(86).31.210_(136)22,22,2-
8_741129_(36)22,3,210_(37)233210_(87).22.2010_(137)22,211,2-
8_823129_(37)3,21,2110_(38)2312210_(88).21.2110_(138)211,211,2-
8_931139_(38).2.2.210_(39)2231210_(89).21.21010_(139)4,3,3-
8_(10)3,21,29_(39)2:2:2010_(40)22211210_(90).3.2.210_(140)4,3,21-
8_(11)32129_(40)9*10_(41)22121210_(91).3.2.2010_(141)4,21,21-
8_(12)22229_(41)20:20:2010_(42)221111210_(92).21.2.2010_(142)31,3,3-
8_(13)311129_(42)22,3,2-10_(43)21221210_(93).3.20.210_(143)31,3,21-
8_(14)221129_(43)211,3,2-10_(44)212111210_(94).30.2.210_(144)31,21,21-
8_(15)21,21,29_(44)22,21,2-10_(45)2111111210_(95).210.2.210_(145)22,3,3-
8_(16).2.209_(45)211,21,2-10_(46)5,3,210_(96).2.21.210_(146)22,21,21-
8_(17).2.29_(46)3,3,21-10_(47)5,21,210_(97).2.210.210_(147)211,3,21-
8_(18)8*9_(47)8*-2010_(48)41,3,210_(98).2.2.2.2010_(148)(3,2)(3,2-)
8_(19)3,3,2-9_(48)21,21,21-10_(49)41,21,210_(99).2.2.20.2010_(149)(3,2)(21,2-)
8_(20)3,21,2-9_(49)-20:-20:-2010_(50)32,3,210_(100)3:2:210_(150)(21,2)(3,2-)
8_(21)21,21,2-10_18210_(51)32,21,210_(101)21:2:210_(151)(21,2)(21,2-)
9_1910_271210_(52)311,3,210_(102)3:2:2010_(152)(3,2)-(3,2)
9_27210_36410_(53)311,21,210_(103)30:2:210_(153)(3,2)-(21,2)
9_36310_461310_(54)23,3,210_(104)3:20:2010_(154)(21,2)-(21,2)
9_45410_5611210_(55)23,21,210_(105)21:20:2010_(155)-3:2:2
9_551310_653210_(56)221,3,210_(106)30:2:2010_(156)-3:2:20
9_652210_7521210_(57)221,21,210_(107)210:2:2010_(157)-3:20:20
9_734210_851410_(58)22,22,210_(108)30:20:2010_(158)-30:2:2
9_8241210_9511310_(59)22,211,210_(109)2.2.2.210_(159)-30:2:20
9_942310_(10)5111210_(60)211,211,210_(110)2.2.2.2010_(160)-30:20:20
9_(10)33310_(11)43310_(61)4,3,310_(111)2.2.20.210_(161)3:-20:-20
9_(11)412210_(12)431210_(62)4,3,2110_(112)8*310_(162)-30:-20:-20
9_(12)421210_(13)422210_(63)4,21,2110_(113)8*2110_(163)8*-30
9_(13)321310_(14)4211210_(64)31,3,310_(114)8*3010_(164)8*2:-20
9_(14)4111210_(15)413210_(65)31,3,2110_(115)8*20.2010_(165)8*2:.-20

Explore with Wolfram|Alpha

References

Conway, J. H. "An Enumeration of Knots and Links, and Some of Their Algebraic Properties." In Computational Problems in Abstract Algebra (Ed. J. Leech). Oxford, England: Pergamon Press, pp. 329-358, 1967.Rolfsen, D. "Table of Knots and Links." Appendix C in Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 280-287, 1976.

Referenced on Wolfram|Alpha

Conway's Knot Notation

Cite this as:

Weisstein, Eric W. "Conway's Knot Notation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ConwaysKnotNotation.html

Subject classifications