(OEIS A014715) giving the asymptotic rate of growth
of the number of digits in the th term of the look and
say sequence, given by the unique positive real root of the polynomial
illustrated in the figure above. Note that the polynomial
given in Conway (1987, p. 188) contains a misprint.
Conway, J. H. "The Weird and Wonderful Chemistry of Audioactive Decay." §5.11 in Open
Problems in Communications and Computation (Ed. T. M. Cover and
B. Gopinath). New York: Springer-Verlag, pp. 173-188, 1987.Conway,
J. H. and Guy, R. K. "The Look and Say Sequence." In The
Book of Numbers. New York: Springer-Verlag, pp. 208-209, 1996.Finch,
S. R. "Conway's Constant." §6.12 in Mathematical
Constants. Cambridge, England: Cambridge University Press, pp. 452-455,
2003.Hilgemeier, M. "Die Gleichniszahlen-Reihe." Bild der
Wissensch.12, 194-196, Dec. 1986.Hilgemeier, M. "'One
Metaphor Fits All': A Fractal Voyage with Conway's Audioactive Decay." Ch. 7
in Fractal
Horizons: The Future Use of Fractals (Ed. C. A. Pickover). New
York: St. Martin's Press, 1996.Sloane, N. J. A. Sequences
A014715 and A014967
in "The On-Line Encyclopedia of Integer Sequences."Vardi,
I. Computational
Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 13-14,
1991.Wolfram, S. A
New Kind of Science. Champaign, IL: Wolfram Media, p. 905,
2002.