The study of efficient algorithms for solving geometric problems. Examples of problems treated by computational geometry include determination of the convex hull and Voronoi diagram for a set of points, triangulation of points in a plane or in space, and other related problems.
Computational Geometry
See also
Convex Hull, Delaunay Triangulation, Discrete Geometry, Geometric Probability, Geometric Span, Happy End Problem, Intersection Detection, Minkowski Sum, Nearest Neighbor Problem, Polygon Clipping, Polygon Tessellation, Polyhedron Packing, Sylvester's Four-Point Problem, Triangulation, Vertex Enumeration, Voronoi DiagramExplore with Wolfram|Alpha
References
Amenta, N. "Directory of Computational Geometry Software." http://www.geom.umn.edu/software/cglist/.de Berg, M.; van Kreveld, M.; Overmans, M.; and Schwarzkopf, O. Computational Geometry: Algorithms and Applications, 2nd rev. ed. Berlin: Springer-Verlag, 2000.Erickson, J. "Computational Geometry Pages." http://compgeom.cs.uiuc.edu/~jeffe/compgeom/.Erickson, J. "Computational Geometry Code." http://compgeom.cs.uiuc.edu/~jeffe/compgeom/code.html.Goodman, J. E. and O'Rourke, J. Handbook of Discrete and Computational Geometry. Boca Raton, FL: CRC Press, 1997.O'Rourke, J. Computational Geometry in C, 2nd ed. Cambridge, England: Cambridge University Press, 1998.Preparata, F. R. and Shamos, M. I. Computational Geometry: An Introduction. New York: Springer-Verlag, 1985.Sack, J.-R. and Urrutia, J. (Eds.). Handbook of Computational Geometry. Amsterdam, Netherlands: North-Holland, 2000.Skiena, S. S. "Computational Geometry." §8.6 in The Algorithm Design Manual. New York: Springer-Verlag, pp. 345-396, 1997.Referenced on Wolfram|Alpha
Computational GeometryCite this as:
Weisstein, Eric W. "Computational Geometry." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ComputationalGeometry.html