TOPICS
Search

Chrystal's Identity


Chrystal's identity is the algebraic identity

 ((b-c)^2+(b+c)^2+2(b^2-c^2))/((b^4-2b^2c^2+c^4)[1/((b-c)^2)+2/(b^2-c^2)+1/((b+c)^2)])=1

given as an exercise by Chrystal (1886).


Explore with Wolfram|Alpha

References

Chrystal, G. Algebra. Edinburgh: Adam and Charles Black, 1886.Dudley, U. "Vive Recreational Mathematics." In Tribute to a Mathemagician (Ed. B. Cipra, E. D. Demaine, M. L. Demaine, and T. Rodgers). Wellesley, MA: A K Peters, pp. 41-47, 2004.

Referenced on Wolfram|Alpha

Chrystal's Identity

Cite this as:

Weisstein, Eric W. "Chrystal's Identity." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ChrystalsIdentity.html

Subject classifications