TOPICS
Search

Chebyshev Constants


The constants

 lambda_(m,n)=inf_(r in R_(m,n))sup_(x>=0)|e^(-x)-r(x)|,

where

 r(x)=(p(x))/(q(x)),

p and q are mth and nth order polynomials, and R_(m,n) is the set of all rational functions with real coefficients.


See also

One-Ninth Constant, Rational Function

Explore with Wolfram|Alpha

References

Finch, S. R. "The One-Ninth Constant." §4.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 259-262, 2003.Petrushev, P. P. and Popov, V. A. Rational Approximation of Real Functions. New York: Cambridge University Press, 1987.Varga, R. S. Scientific Computations on Mathematical Problems and Conjectures. Philadelphia, PA: SIAM, 1990. Philadelphia, PA: SIAM, 1990.

Referenced on Wolfram|Alpha

Chebyshev Constants

Cite this as:

Weisstein, Eric W. "Chebyshev Constants." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ChebyshevConstants.html

Subject classifications