TOPICS
Search

Cayley-Klein Parameters


The parameters alpha, beta, gamma, and delta which, like the three Euler angles, provide a way to uniquely characterize the orientation of a solid body. These parameters satisfy the identities

alphaalpha^_+gammagamma^_=1
(1)
alphaalpha^_+betabeta^_=1
(2)
betabeta^_+deltadelta^_=1
(3)
alpha^_beta+gamma^_delta=0
(4)
alphadelta-betagamma=1
(5)

and

beta=-gamma^_
(6)
delta=alpha^_,
(7)

where z^_ denotes the complex conjugate. In terms of the Euler angles theta, phi, and psi, the Cayley-Klein parameters are given by

alpha=e^(i(psi+phi)/2)cos(1/2theta)
(8)
beta=ie^(i(psi-phi)/2)sin(1/2theta)
(9)
gamma=ie^(-i(psi-phi)/2)sin(1/2theta)
(10)
delta=e^(-i(psi+phi)/2)cos(1/2theta)
(11)

(Goldstein 1980, p. 155).

The transformation matrix is given in terms of the Cayley-Klein parameters by

 A=[1/2(alpha^2-gamma^2+delta^2-beta^2) 1/2i(gamma^2-alpha^2+delta^2-beta^2) gammadelta-alphabeta; 1/2i(alpha^2+gamma^2-beta^2-delta^2) 1/2(alpha^2+gamma^2+beta^2+delta^2) -i(alphabeta+gammadelta); betadelta-alphagamma i(alphagamma+betadelta) alphadelta+betagamma]
(12)

(Goldstein 1980, p. 153).

The Cayley-Klein parameters may be viewed as parameters of a matrix (denoted Q for its close relationship with quaternions)

 Q=[alpha beta; gamma delta]
(13)

which characterizes the transformations

u^'=alphau+betav
(14)
v^'=gammau+deltav.
(15)

of a linear space having complex axes. This matrix satisfies

 Q^(H)Q=QQ^(H)=I,
(16)

where I is the identity matrix and A^(H) the conjugate transpose, as well as

 |Q|^(H)|Q|=1.
(17)

In terms of the Euler parameters e_i and the Pauli matrices sigma_i, the Q-matrix can be written as

 Q=e_0I+i(e_1sigma_1+e_2sigma_2+e_3sigma_3)
(18)

(Goldstein 1980, p. 156).


See also

Euler Angles, Euler Parameters, Pauli Matrices, Quaternion, Rotation

Explore with Wolfram|Alpha

References

Goldstein, H. "The Cayley-Klein Parameters and Related Quantities." §4-5 in Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, pp. 148-158, 1980.Varshalovich, D. A.; Moskalev, A. N.; and Khersonskii, V. K. "Description of Rotations in Terms of Unitary 2×2 Matrices. Cayley-Klein Parameters." §1.4.3 in Quantum Theory of Angular Momentum. Singapore: World Scientific, pp. 24-27, 1988.

Referenced on Wolfram|Alpha

Cayley-Klein Parameters

Cite this as:

Weisstein, Eric W. "Cayley-Klein Parameters." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Cayley-KleinParameters.html

Subject classifications