The th cabtaxi number is the smallest positive number that can be written in ways as a sum of two (not necessarily positive) cubes. The name derived from the taxicab number, which is the smallest number representable in ways as a sum of positive cubes. The first few are 1, 91, 728, 2741256, 6017193, 1412774811, 11302198488, 137513849003496, 424910390480793000, 933528127886302221000, ... (OEIS A047696), as listed below.
(1)
| |||
(2)
| |||
(3)
| |||
(4)
| |||
(5)
| |||
(6)
| |||
(7)
| |||
(8)
| |||
(9)
| |||
(10)
| |||
(11)
| |||
(12)
| |||
(13)
| |||
(14)
| |||
(15)
| |||
(16)
| |||
(17)
| |||
(18)
| |||
(19)
| |||
(20)
| |||
(21)
| |||
(22)
| |||
(23)
| |||
(24)
| |||
(25)
| |||
(26)
| |||
(27)
| |||
(28)
| |||
(29)
| |||
(30)
| |||
(31)
| |||
(32)
| |||
(33)
| |||
(34)
| |||
(35)
| |||
(36)
| |||
(37)
| |||
(38)
| |||
(39)
| |||
(40)
| |||
(41)
| |||
(42)
| |||
(43)
| |||
(44)
| |||
(45)
| |||
(46)
| |||
(47)
| |||
(48)
| |||
(49)
| |||
(50)
| |||
(51)
| |||
(52)
| |||
(53)
| |||
(54)
| |||
(55)
|
The 9th term was found by D. Moore (2005) and the 10th by Christian Boyer in 2006, the latter of which was independently verified by Hollerbach (2008).