TOPICS
Search

Brown's Criterion


A sequence {nu_i} of nondecreasing positive integers is complete iff

1. nu_1=1.

2. For all k=2, 3, ...,

 s_(k-1)=nu_1+nu_2+...+nu_(k-1)>=nu_k-1.

A corollary states that a sequence for which nu_1=1 and nu_(k+1)<=2nu_k is complete (Honsberger 1985).


See also

Complete Sequence, Fibonacci Number, Fibonacci n-Step Number, Tribonacci Number

Explore with Wolfram|Alpha

References

Brown, J. L. Jr. "Notes on Complete Sequences of Integers." Amer. Math. Monthly 68, 557-560, 1961.Honsberger, R. Mathematical Gems III. Washington, DC: Math. Assoc. Amer., pp. 123-130, 1985.

Referenced on Wolfram|Alpha

Brown's Criterion

Cite this as:

Weisstein, Eric W. "Brown's Criterion." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BrownsCriterion.html

Subject classifications