TOPICS
Search

Bridge Knot


An n-bridge knot is a knot with bridge number n. The set of 2-bridge knots is identical to the set of rational knots. If L is a 2-bridge knot, then the BLM/Ho polynomial Q and Jones polynomial V satisfy

 Q_L(z)=2z^(-1)V_L(t)V_L(t^(-1)+1-2z^(-1)),

where z=-t-t^(-1) (Kanenobu and Sumi 1993). Kanenobu and Sumi also give a table containing the number of distinct 2-bridge knots of n crossings for n=10 to 22, both not counting and counting mirror images as distinct.

nK_nK_n+K_n^*
300
400
5
6
7
8
9
104585
1191182
12176341
13352704
146931365
1513872774
1627525461
17550411008
181096521845
192193143862
204377687381
2187552175104
22174933349525

Explore with Wolfram|Alpha

References

Kanenobu, T. and Sumi, T. "Polynomial Invariants of 2-Bridge Links through 20 Crossings." Adv. Studies Pure Math. 20, 125-145, 1992.Kanenobu, T. and Sumi, T. "Polynomial Invariants of 2-Bridge Knots through 22-Crossings." Math. Comput. 60, 771-778 and S17-S28, 1993.Schubert, H. "Knotten mit zwei Brücken." Math. Z. 65, 133-170, 1956.

Referenced on Wolfram|Alpha

Bridge Knot

Cite this as:

Weisstein, Eric W. "Bridge Knot." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BridgeKnot.html

Subject classifications