Consider strings, each oriented vertically from a lower to an upper "bar." If this is the least number of strings needed to make a closed braid representation of a link, is called the braid index. A general -braid is constructed by iteratively applying the () operator, which switches the lower endpoints of the th and th strings--keeping the upper endpoints fixed--with the th string brought above the th string. If the th string passes below the th string, it is denoted .
The operations and on strings define a group known as the braid group or Artin braid group, denoted .
Topological equivalence for different representations of a braid word and is guaranteed by the conditions
(1)
|
as first proved by E. Artin.
Any -braid can be expressed as a braid word, e.g., is a braid word in the braid group . When the opposite ends of the braids are connected by nonintersecting lines, knots (or links) may formed that can be labeled by their corresponding braid word. The Burau representation gives a matrix representation of the braid groups.