TOPICS
Search

Bohemian Dome


BohemianDome

A quartic surface which can be constructed as follows. Given a circle C and plane E perpendicular to the plane of C, move a second circle K of the same radius as C through space so that its center always lies on C and it remains parallel to E. Then K sweeps out the Bohemian dome. It can be given by the parametric equations

x=acosu
(1)
y=bcosv+asinu
(2)
z=csinv
(3)

where u,v in [0,2pi). In the above plot, a=0.5, b=1.5, and c=1.

The Gaussian curvature and mean curvature of the surface are given by

K=(bc^2cosvsinu)/(a(c^2cos^2v+b^2sin^2usin^2v)^2)
(4)
M=-(4abcsinu+2ccosv[b^2+c^2+(c^2-b^2)cos(2v)])/(8|a|(c^2cos^2v+b^2sin^2usin^2v)^(3/2)).
(5)

See also

Quartic Surface

Explore with Wolfram|Alpha

References

Fischer, G. (Ed.). Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Kommentarband. Braunschweig, Germany: Vieweg, pp. 19-20, 1986.Fischer, G. (Ed.). Plate 50 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig, Germany: Vieweg, p. 50, 1986.Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, p. 389, 1997.Nordstrand, T. "Bohemian Dome." http://jalape.no/math/bodtxt.

Cite this as:

Weisstein, Eric W. "Bohemian Dome." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BohemianDome.html

Subject classifications