TOPICS
Search

Blasius Differential Equation


The third-order ordinary differential equation

 2y^(''')+yy^('')=0.

This equation arises in the theory of fluid boundary layers, and must be solved numerically (Rosenhead 1963; Schlichting 1979; Tritton 1989, p. 129). The velocity profile produced by this differential equation is known as the Blasius profile.


Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Meyer, G. H. Initial Value Methods for Boundary Value Problems: Theory and Application of Invariant Imbedding. New York: Academic Press, 1973.Rosenhead, L. (Ed.). Laminar Boundary Layers. Oxford, England: Oxford University Press, 1963.Schlichting, H. Boundary Layer Theory, 7th ed. New York: McGraw-Hill, 1979.Tritton, D. J. Physical Fluid Dynamics, 2nd ed. Oxford, England: Clarendon Press, p. 129, 1989.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 128, 1997.

Referenced on Wolfram|Alpha

Blasius Differential Equation

Cite this as:

Weisstein, Eric W. "Blasius Differential Equation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BlasiusDifferentialEquation.html

Subject classifications