TOPICS
Search

Binet-Cauchy Identity


The algebraic identity

 (sum_(i=1)^na_ic_i)(sum_(i=1)^nb_id_i)-(sum_(i=1)^na_id_i)(sum_(i=1)^nb_ic_i) 
 =sum_(1<=i<j<=n)(a_ib_j-a_jb_i)(c_id_j-c_jd_i).
(1)

Letting c_i=a_i and d_i=b_i gives Lagrange's identity.

The n=2 case gives

 (a_1c_1+a_2c_2)(b_1d_1+b_2d_2)-(b_1c_1+b_2c_2)(a_1d_1+a_2d_2) 
 =(a_1b_2-a_2b_1)(c_1d_2-c_2d_1).
(2)

The n=3 case is equivalent to the vector identity

 (AxB)·(CxD)=(A·C)(B·D)-(A·D)(B·C)
(3)

(Morse and Feshbach 1953, p. 114; Griffiths 1981, p. 13; Arfken 1985, p. 32), where A·B is the dot product and AxB is the cross product. Note that this identity itself is sometimes known as Lagrange's identity (Bronshtein and Semendyayev 2004, p. 185).


See also

Lagrange's Identity

Explore with Wolfram|Alpha

References

Arfken, G. "Triple Scalar Product, Triple Vector Product." §1.5 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, 1985.Bronshtein, I. N.; Semendyayev, K. A.; Musiol, G.; and Muehlig, H. Handbook of Mathematics, 4th ed. New York: Springer-Verlag, 2004.Griffiths, D. J. Introduction to Electrodynamics. Englewood Cliffs, NJ: Prentice-Hall, 1981.Mitrinović, D. S. Analytic Inequalities. New York: Springer-Verlag, p. 42, 1970.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, 1953.

Referenced on Wolfram|Alpha

Binet-Cauchy Identity

Cite this as:

Weisstein, Eric W. "Binet-Cauchy Identity." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Binet-CauchyIdentity.html

Subject classifications