The algebraic identity
(1)
Letting
and
gives Lagrange's identity .
The
case gives
(2)
The
case is equivalent to the vector identity
(3)
(Morse and Feshbach 1953, p. 114; Griffiths 1981, p. 13; Arfken 1985, p. 32), where
is the dot product and is the cross product . Note
that this identity itself is sometimes known as Lagrange's
identity (Bronshtein and Semendyayev 2004, p. 185).
See also Lagrange's Identity
Explore with Wolfram|Alpha
References Arfken, G. "Triple Scalar Product, Triple Vector Product." §1.5 in Mathematical
Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, 1985. Bronshtein,
I. N.; Semendyayev, K. A.; Musiol, G.; and Muehlig, H. Handbook
of Mathematics, 4th ed. New York: Springer-Verlag, 2004. Griffiths,
D. J. Introduction
to Electrodynamics. Englewood Cliffs, NJ: Prentice-Hall, 1981. Mitrinović,
D. S. Analytic
Inequalities. New York: Springer-Verlag, p. 42, 1970. Morse,
P. M. and Feshbach, H. Methods
of Theoretical Physics, Part I. New York: McGraw-Hill, 1953. Referenced
on Wolfram|Alpha Binet-Cauchy Identity
Cite this as:
Weisstein, Eric W. "Binet-Cauchy Identity."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/Binet-CauchyIdentity.html
Subject classifications