Bertrand's postulate, also called the Bertrand-Chebyshev theorem or Chebyshev's theorem, states that if , there is always at least one prime between and . Equivalently, if , then there is always at least one prime such that . The conjecture was first made by Bertrand in 1845 (Bertrand 1845; Nagell 1951, p. 67; Havil 2003, p. 25). It was proved in 1850 by Chebyshev (Chebyshev 1854; Havil 2003, p. 25; Derbyshire 2004, p. 124) using non-elementary methods, and is therefore sometimes known as Chebyshev's theorem. The first elementary proof was by Ramanujan, and later improved by a 19-year-old Erdős in 1932.
A short verse about Bertrand's postulate states, "Chebyshev said it, but I'll say it again; There's always a prime between and ." While commonly attributed to Erdős or to some other Hungarian mathematician upon Erdős's youthful re-proof the theorem (Hoffman 1998), the quote is actually due to N. J. Fine (Schechter 1998).
An extension of this result is that if , then there is a number containing a prime divisor in the sequence , , ..., . (The case then corresponds to Bertrand's postulate.) This was first proved by Sylvester, independently by Schur, and a simple proof was given by Erdős (1934; Hoffman 1998, p. 37)
The numbers of primes between and for , 2, ... are 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, ... (OEIS A077463), while the numbers of primes between and are 0, 1, 1, 2, 1, 2, 2, 2, 3, 4, 3, 4, 3, 3, ... (OEIS A060715). For , 2, ..., the values of , where is the next prime function are 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, ... (OEIS A007918).
After his proof of Bertrand's postulate, Ramanujan (1919) proved the generalization that , 2, 3, 4, 5, ... if , 11, 17, 29, 41, ... (OEIS A104272), respectively, where is the prime counting function. The numbers are sometimes known as Ramanujan primes. The case for all is Bertrand's postulate.
A related problem is to find the least value of so that there exists at least one prime between and for sufficiently large (Berndt 1994). The smallest known value is (Lou and Yao 1992).