TOPICS
Search

Beauzamy and Dégot's Identity


For P, Q, R, and S polynomials in n variables

 [P·Q,R·S]=sum_(i_1,...,i_n>=0)A/(i_1!...i_n!),
(1)

where

 A=[R^((i_1,...,i_n))(D_1,...,D_n)Q(x_1,...,x_n) 
 ×P^((i_1,...,i_n))(D_1,...,D_n)S(x_1,...,x_n)],
(2)

D_i=partial/partialx_i is the differential operator, [X,Y] is the Bombieri inner product, and

 P^((i_1,...,i_n))=D_1^(i_1)...D_n^(i_n)P.
(3)

See also

Reznick's Identity

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Beauzamy and Dégot's Identity." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BeauzamyandDegotsIdentity.html

Subject classifications