The bead-sorting algorithm orders a list of a positive integers increasingly by representing numbers as a list of a 1s, where each 1 stands for a bead. The initial integers to be sorted are initially represented as left-aligned rows of beads, and in each step of the sorting process, a bead is slid down one unit if possible until each bead can no longer slide. For example, the graphic above shows the process for the numbers 7, 2, 1, 4, and 2 (Trott 2004, pp. 82-83).
Bead-Sort
Explore with Wolfram|Alpha
References
Arulanandham, J. J.; Calude, C. S.; and Dinneen, M. J. "Bead-Sort: a Natural Sorting Algorithm." Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, No. 76, 153-162, 2002.Arulanandham, J. J.; Calude, C. S.; Dinneen, M. J.; and Peper, F. (Eds.). Unconventional Models of Computation: Third International Conference, UMC 2002, Kobe, Japan, October 15-19, 2002, Proceedings. Berlin: Springer-Verlag, 2002.Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, pp. 82-83, 2004. http://www.mathematicaguidebooks.org/.Referenced on Wolfram|Alpha
Bead-SortCite this as:
Weisstein, Eric W. "Bead-Sort." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Bead-Sort.html