TOPICS
Search

Barycentric Coordinates


Barycentric coordinates are triples of numbers (t_1,t_2,t_3) corresponding to masses placed at the vertices of a reference triangle DeltaA_1A_2A_3. These masses then determine a point P, which is the geometric centroid of the three masses and is identified with coordinates (t_1,t_2,t_3). The vertices of the triangle are given by (1,0,0), (0,1,0), and (0,0,1). Barycentric coordinates were discovered by Möbius in 1827 (Coxeter 1969, p. 217; Fauvel et al. 1993).

Barycentric

To find the barycentric coordinates for an arbitrary point P, find t_2 and t_3 from the point Q at the intersection of the line A_1P with the side A_2A_3, and then determine t_1 as the mass at A_1 that will balance a mass t_2+t_3 at Q, thus making P the centroid (left figure). Furthermore, the areas of the triangles DeltaA_1A_2P, DeltaA_1A_3P, and DeltaA_2A_3P are proportional to the barycentric coordinates t_3, t_2, and t_1 of P (right figure; Coxeter 1969, p. 217).

Barycentric coordinates are homogeneous, so

 (t_1,t_2,t_3)=(mut_1,mut_2,mut_3)
(1)

for mu!=0.

Barycentric coordinates normalized so that they become the actual areas of the subtriangles are called homogeneous barycentric coordinates. Barycentric coordinates normalized so that

 t_1+t_2+t_3=1,
(2)

so that the coordinates give the areas of the subtriangles normalized by the area of the original triangle are called areal coordinates (Coxeter 1969, p. 218). Barycentric and areal coordinates can provide particularly elegant proofs of geometric theorems such as Routh's theorem, Ceva's theorem, and Menelaus' theorem (Coxeter 1969, pp. 219-221).

(Not necessarily homogeneous) barycentric coordinates for a number of common centers are summarized in the following table. In the table, a, b, and c are the side lengths of the triangle and s is its semiperimeter.

In barycentric coordinates, a line has a linear homogeneous equation. In particular, the line joining points (r_1,r_2,r_3) and (s_1,s_2,s_3) has equation

 |r_1 r_2 r_3; s_1 s_2 s_3; t_1 t_2 t_3|=0
(3)

(Loney 1962, pp. 39 and 57; Coxeter 1969, p. 219; Bottema 1982). If the vertices P_i of a triangle DeltaP_1P_2P_3 have barycentric coordinates (x_i,y_i,z_i), then the area of the triangle is

 DeltaP_1P_2P_3=|x_1 y_1 z_1; x_2 y_2 z_2; x_3 y_3 z_3|DeltaABC
(4)

(Bottema 1982, Yiu 2000).


See also

Areal Coordinates, Exact Trilinear Coordinates, Homogeneous Barycentric Coordinates, Trilinear Coordinates

Explore with Wolfram|Alpha

References

Bogomolny, A. "Barycentric Coordinates." http://www.cut-the-knot.org/triangle/barycenter.shtml.Bottema, O. "On the Area of a Triangle in Barycentric Coordinates." Crux. Math. 8, 228-231, 1982.Coxeter, H. S. M. "Barycentric Coordinates." §13.7 in Introduction to Geometry, 2nd ed. New York: Wiley, pp. 216-221, 1969.Fauvel, J.; Flood, R.; and Wilson, R. J. (Eds.). Möbius and his Band: Mathematics and Astronomy in Nineteenth-Century Germany. Oxford, England: Oxford University Press, 1993.Joy, K. "Barycentric Coordinates." 1996. http://graphics.idav.ucdavis.edu/education/GraphicsNotes/Barycentric-Coordinates/Barycentric-Coordinates.html.Loney, S. L. The Elements of Coordinate Geometry, 2 vols. in 1. Part II: Trilinear Coordinates. London: Macmillan, 1962.Sommerville, D. M. Y. Analytical Conics, 3rd ed. London: G. Bell and Sons, 1961.Yiu, P. "The Uses of Homogeneous Barycentric Coordinates in Plane Euclidean Geometry." Internat. J. Math. Ed. Sci. Tech. 31, 569-578, 2000. http://www.math.fau.edu/yiu/barycentric.pdf.

Referenced on Wolfram|Alpha

Barycentric Coordinates

Cite this as:

Weisstein, Eric W. "Barycentric Coordinates." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BarycentricCoordinates.html

Subject classifications