The associated Stirling numbers of the first kind are defined as the number of permutations of
a given number having exactly permutation cycles, all
of which are of length or greater (Comtet 1974, p. 256; Riordan 1980, p. 75).
They are a special case of the more general numbers , and have the recurrence
relation
(1)
with initial conditions for , and (Appell 1880; Tricomi 1951; Carlitz 1958; Comtet
1974, pp. 256, 293, and 295). The generating
function for is given by
(2)
(Comtet 1974, p. 256). The associated Stirling numbers of the first kind satisfy the sum identity
Appell, P. "Développments en série entière de ." Grunert Archiv65, 171-175,
1880.Carlitz, L. "On Some Polynomials of Tricomi." Boll.
Un. M. Ital.13, 58-64, 1958.Carlitz, L. "Note on Nörlund's
[sic] Polynomial ." Proc. Amer. Math. Soc.11, 452-455,
1960.Comtet, L. Advanced
Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht,
Netherlands: Reidel, 1974.Riordan, J. An
Introduction to Combinatorial Analysis. New York: Wiley, 1980.Sloane,
N. J. A. Sequence A000457/M4736
in "The On-Line Encyclopedia of Integer Sequences."Tricomi,
F. G. "A Class of Non-Orthogonal Polynomials Related to those of Laguerre."
J. Analyse M.1, 209-231, 1951.