There are at least two statements which go by the name of Artin's conjecture.
If is any complex finite-dimensional representation of the absolute Galois group of a number field, then Artin showed how to associate an -series with it. These -series directly generalize zeta functions and Dirichlet -series, and as a result of work by Richard Brauer, is known to extend to a meromorphic function on the complex plane. Artin's conjecture predicts that it is in fact holomorphic, i.e., has no poles, with the possible exception of a pole at (Artin 1923/1924). Compare with the generalized Riemann hypothesis, which deals with the locations of the zeros of certain -series.
The second conjecture states that every integer not equal to or a square number is a primitive root modulo for infinitely many and proposes a density for the set of such which are always rational multiples of a constant known as Artin's constant. There is an analogous theorem for functions instead of numbers which has been proved by Billharz (Shanks 1993, p. 147).