An Archimedean circle is a circle defined in the arbelos in a natural way and congruent to Archimedes' circles,
i.e., having radius
for an arbelos with outer semicircle of unit radius and parameter .
See also
Arbelos,
Archimedes' Circles,
Bankoff Circle,
Schoch
Line
This entry contributed by Floor
van Lamoen
Explore with Wolfram|Alpha
References
Bankoff, L. "Are the Twin Circles of Archimedes Really Twins?" Math. Mag. 47, 214-218, 1974.Dodge, C. W.;
Schoch, T.; Woo, P. Y.; and Yiu, P. "Those Ubiquitous Archimedean Circles."
Math. Mag. 72, 202-213, 1999.Okumura, H. and Watanabe,
M. "The Archimedean Circles of Schoch and Woo." Forum Geom. 4,
27-34, 2004. http://forumgeom.fau.edu/FG2004volume4/FG200404index.html.Okumura,
H. and Watanabe, M. "A Generalization of Power's Archimedean Circles."
Forum Geom. 6, 103-105, 2006. http://forumgeom.fau.edu/FG2006volume6/FG200611index.html.Power,
F. "Some More Archimedean Circles in the Arbelos." Forum Geom. 5,
133-134, 2005. http://forumgeom.fau.edu/FG2005volume5/FG200517index.html.Schoch,
T. "A Dozen More Arbelos Twins." http://www.retas.de/thomas/arbelos/biola/.van
Lamoen, F. "Archimedean Adventures." Forum Geom. 6, 77-96,
2006. http://forumgeom.fau.edu/FG2006volume6/FG200609index.html.Referenced
on Wolfram|Alpha
Archimedean Circle
Cite this as:
van Lamoen, Floor. "Archimedean Circle." From MathWorld--A Wolfram Web Resource, created by Eric
W. Weisstein. https://mathworld.wolfram.com/ArchimedeanCircle.html
Subject classifications