TOPICS
Search

Antisymmetric Tensor


An antisymmetric (also called alternating) tensor is a tensor which changes sign when two indices are switched. For example, a tensor A^(x_1,...,x_n) such that

 A^(x_1,...,x_i,...,x_j,...,x_n)=-A^(x_n,...,x_i,...,x_j,...,x_1)
(1)

is antisymmetric.

The simplest nontrivial antisymmetric tensor is therefore an antisymmetric rank-2 tensor, which satisfies

 A^(mn)=-A^(nm).
(2)

Furthermore, any rank-2 tensor can be written as a sum of symmetric and antisymmetric parts as

 A^(mn)=1/2(A^(mn)+A^(nm))+1/2(A^(mn)-A^(nm)).
(3)

The antisymmetric part of a tensor A^(ab) is sometimes denoted using the special notation

 A^([ab])=1/2(A^(ab)-A^(ba)).
(4)

For a general rank-n tensor,

 A^([a_1...a_n])=1/(n!)epsilon_(a_1...a_n)sum_(permutations)A^(a_1...a_n),
(5)

where epsilon_(a_1...a_n) is the permutation symbol. Symbols for the symmetric and antisymmetric parts of tensors can be combined, for example

 T^((ab)c)_([de])=1/4(T^(abc)_(de)+T^(bac)_(de)-T^(abc)_(ed)-T^(bac)_(ed)).
(6)

(Wald 1984, p. 26).


See also

Alternating Multilinear Form, Exterior Algebra, Symmetric Tensor, Wedge Product

Portions of this entry contributed by Todd Rowland

Explore with Wolfram|Alpha

References

Wald, R. M. General Relativity. Chicago, IL: University of Chicago Press, 1984.

Referenced on Wolfram|Alpha

Antisymmetric Tensor

Cite this as:

Rowland, Todd and Weisstein, Eric W. "Antisymmetric Tensor." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AntisymmetricTensor.html

Subject classifications