If is a point on the circumcircle of a reference triangle, then the line , where is the isogonal conjugate of , is called the antipedal line of . It is a central line if is a center (Kimberling 1998, p. 150).
Antipedal Line
See also
Antipedal Triangle, Central Line, Isogonal Conjugate, Pedal LineExplore with Wolfram|Alpha
References
Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.Referenced on Wolfram|Alpha
Antipedal LineCite this as:
Weisstein, Eric W. "Antipedal Line." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AntipedalLine.html