TOPICS
Search

Amicable Triple


Dickson (1913, 2005) defined an amicable triple to be a triple of three numbers (l,m,n) such that

s(l)=m+n
(1)
s(m)=l+n
(2)
s(n)=l+m,
(3)

where s(n) is the restricted divisor function (Madachy 1979). Dickson (1913, 2005) found eight sets of amicable triples with two equal numbers, and two sets with distinct numbers. The latter are (123228768, 103340640, 124015008), for which

s(123228768)=103340640+124015008=227355648
(4)
s(103340640)=123228768+124015008=247243776
(5)
s(124015008)=123228768+103340640=226569408,
(6)

and (1945330728960, 2324196638720, 2615631953920), for which

s(1945330728960)=2324196638720+2615631953920
(7)
=4939828592640
(8)
s(2324196638720)=1945330728960+2615631953920
(9)
=4560962682880
(10)
s(2615631953920)=1945330728960+2324196638720
(11)
=4269527367680.
(12)

A second definition (Guy 1994) defines an amicable triple as a triple (a,b,c) such that

 sigma(a)=sigma(b)=sigma(c)=a+b+c,
(13)

where sigma(n) is the divisor function. An example is (2^23^25·11, 2^53^27, 2^23^271).


See also

Amicable Pair, Amicable Quadruple

Explore with Wolfram|Alpha

References

Borho, W. "Über die Fixpunkte der k-fach iterierten Teilersummenfunktionen." Mitt. Math. Gesellsch. Hamburg 9, 34-48, 1969.Dickson, L. E. "Amicable Number Triples." Amer. Math. Monthly 20, 84-92, 1913.Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, p. 50, 2005.Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 59, 1994.Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, p. 156, 1979.Mason, T. E. "On Amicable Numbers and Their Generalizations." Amer. Math. Monthly 28, 195-200, 1921.

Referenced on Wolfram|Alpha

Amicable Triple

Cite this as:

Weisstein, Eric W. "Amicable Triple." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AmicableTriple.html

Subject classifications