TOPICS
Search

Algebraically Independent


Let K be a field, and A a K-algebra. Elements y_1, ..., y_n are algebraically independent over K if the natural surjection K[Y_1,...,Y_n]->K[y_1,...,y_n] is an isomorphism. In other words, there are no polynomial relations F(y_1,...,y_n)=0 with coefficients in K.


This entry contributed by Johnny Chen

Explore with Wolfram|Alpha

References

Reid, M. Undergraduate Commutative Algebra. Cambridge, England: Cambridge University Press, 1995.

SeeAlso

Irrational Number, Lindemann-Weierstrass Theorem, Schanuel's Conjecture, Shidlovskii Theorem, Transcendental Number

Referenced on Wolfram|Alpha

Algebraically Independent

Cite this as:

Chen, Johnny. "Algebraically Independent." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/AlgebraicallyIndependent.html

Subject classifications