TOPICS
Search

Adams' Circle


AdamsCircle

Given a triangle DeltaABC, construct the contact triangle DeltaT_AT_BT_C. Now extend lines parallel to the sides of the contact triangle from the Gergonne point. These intersect the triangle DeltaABC in the six points P, Q, R, S, T, and U. C. Adams proved in 1843 that these points are concyclic in a circle now known as the Adams' circle.

Adams' circle is a central circle with circle function

 l=(a(a-b-c)^3(ab+ac-2bc-b^2-c^2))/(bc(a^2+b^2+c^2-2ab-2bc-2ca)),
(1)

which does not correspond to any notable triangle center. Its radius is the complicated expression

 R_A=(rsqrt(p^2-abcs-ps^2))/(p-s^2),
(2)

where r is the inradius and s is the semiperimeter of the reference triangle and

 p=ab+bc+ca.
(3)

The center of Adams' circle is the incenter of DeltaABC (Honsberger 1995, pp. 62-74).

No notable triangle centers lie on Adams' circle.

AdamsTriangle

Extend the segments UP, TS, and RQ to form a triangle DeltaXYZ. Then the Gergonne point of DeltaABC is the symmedian point of DeltaXYZ, and Adams' circle of DeltaABC is the first Lemoine circle of DeltaXYZ (Honsberger 1995, p. 98).


See also

Contact Triangle, Gergonne Point

Explore with Wolfram|Alpha

References

Adams, C. Die Lehre von den Transversalen. Witherthur, Germany: Steiner'schen Buchhandlung, 1843.Honsberger, R. "A Real Gem." §7.4 (v) in Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., pp. 62-64 and 98, 1995.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.Mackay, J. "Symmedians of a Triangle and their Concomitant Circles." Proc. Edinburgh Math. Soc. 14, 37-103, 1896.

Referenced on Wolfram|Alpha

Adams' Circle

Cite this as:

Weisstein, Eric W. "Adams' Circle." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AdamsCircle.html

Subject classifications